Conference Publications

Eric Todd, Millicent L. Li, Arnab Sen Sharma, Aaron Mueller, Byron C. Wallace, David Bau. Function Vectors in Large Language Models. Proceedings of the 2024 International Conference on Learning Representations. (ICLR 2024)

We report the presence of a simple neural mechanism that represents an input-output function as a vector within autoregressive transformer language models (LMs). Using causal mediation analysis on a diverse range of in-context-learning (ICL) tasks, we find that a small number attention heads transport a compact representation of the demonstrated task, which we call a function vector (FV). FVs are robust to changes in context, i.e., they trigger execution of the task on inputs such as zero-shot and natural text settings that do not resemble the ICL contexts from which they are collected. We test FVs across a range of tasks, models, and layers and find strong causal effects across settings in middle layers. We investigate the internal structure of FVs and find while that they often contain information that encodes the output space of the function, this information alone is not sufficient to reconstruct an FV. Finally, we test semantic vector composition in FVs, and find that to some extent they can be summed to create vectors that trigger new complex tasks. Our findings show that compact, causal internal vector representations of function abstractions can be explicitly extracted from LLMs.

Eric Todd, Mylan R. Cook, Katrina Pedersen, David S. Woolworth, Brooks A. Butler, Xin Zhao, Colt Liu, Kent L. Gee, Mark K. Transtrum, Sean Warnick. Automatic detection of instances of focused crowd involvement at recreational events. Proceedings of Meetings on Acoustics 39, 040003. (2019)

This paper describes the development of an automated classification algorithm for detecting instances of focused crowd involvement present in crowd cheering. The purpose of this classification system is for situations where crowds are to be rewarded for not just the loudness of cheering, but for a concentrated effort, such as in Mardi Gras parades to attract bead throws or during critical moments in sports matches. It is therefore essential to separate non-crowd noise, general crowd noise, and focused crowd cheering efforts from one another. The importance of various features—both spectral and low-level audio processing features—are investigated. Data from both parades and sporting events are used for comparison of noise from different venues. This research builds upon previous clustering analyses of crowd noise from collegiate basketball games, using hierarchical clustering as an unsupervised machine learning approach to identify low-level features related to focused crowd involvement. For Mardi Gras crowd data we use a continuous thresholding approach based on these key low-level features as a method of identifying instances where the crowd is particularly active and engaged.

Brooks A. Butler, Katrina Pedersen, Mylan R. Cook, Spencer G. Wadsworth, Eric Todd, Dallen Stark, Kent L. Gee, Mark K. Transtrum, Sean Warnick. Classifying crowd behavior at collegiate basketball games using acoustic data. Proceedings of Meetings on Acoustics 35, 055006. (2018)

The relationship between crowd noise and crowd behavioral dynamics is a relatively unexplored field of research. Signal processing and machine learning (ML) may be useful in classifying and predicting crowd emotional state. This paper describes using both supervised and unsupervised ML methods to automatically differentiate between different types of crowd noise. Features used include A-weighted spectral levels, low-level audio signal parameters, and Mel-frequency cepstral coefficients. K-means clustering is used for the unsupervised approach with spectral levels, and six distinct clusters are found; four of these clusters correspond to different amounts of crowd involvement, while two correspond to different amounts of band or public announcement system noise. Random forests are used for the supervised approach, wherein validation and testing accuracies are found to be similar. These investigations are useful for differentiating between types of crowd noise, which is necessary for future work in automatically determining and classifying crowd emotional state.


Preprints and In Submission

Jaden Fiotto-Kaufman, Alexander R Loftus, Eric Todd, Jannik Brinkmann, Caden Juang, Koyena Pal, Can Rager, Aaron Mueller, Samuel Marks, Arnab Sen Sharma, Francesca Lucchetti, Michael Ripa, Adam Belfki, Nikhil Prakash, Sumeet Multani, Carla Brodley, Arjun Guha, Jonathan Bell, Byron Wallace, David Bau. NNsight and NDIF: Democratizing Access to Foundation Model Internals. 2024.

The enormous scale of state-of-the-art foundation models has limited their accessibility to scientists, because customized experiments on large models require costly hardware and complex engineering that is impractical for most researchers. To alleviate these problems, we introduce NNsight, an open-source Python package with a simple, flexible API that can express interventions on any PyTorch model by building computation graphs. We also introduce NDIF, a collaborative research platform providing researchers access to foundation-scale LLMs via the NNsight API. Code, documentation, and tutorials are available at https://nnsight.net/.

Aaron Mueller, Jannik Brinkmann, Millicent Li, Samuel Marks, Koyena Pal, Nikhil Prakash, Can Rager, Aruna Sankaranarayanan, Arnab Sen Sharma, Jiuding Sun, Eric Todd, David Bau, Yonatan Belinkov. The Quest for the Right Mediator: A History, Survey, and Theoretical Grounding of Causal Interpretability. 2024.

Interpretability provides a toolset for understanding how and why neural networks behave in certain ways. However, there is little unity in the field: most studies employ ad-hoc evaluations and do not share theoretical foundations, making it difficult to measure progress and compare the pros and cons of different techniques. Furthermore, while mechanistic understanding is frequently discussed, the basic causal units underlying these mechanisms are often not explicitly defined. In this paper, we propose a perspective on interpretability research grounded in causal mediation analysis. Specifically, we describe the history and current state of interpretability taxonomized according to the types of causal units (mediators) employed, as well as methods used to search over mediators. We discuss the pros and cons of each mediator, providing insights as to when particular kinds of mediators and search methods are most appropriate depending on the goals of a given study. We argue that this framing yields a more cohesive narrative of the field, as well as actionable insights for future work. Specifically, we recommend a focus on discovering new mediators with better trade-offs between human-interpretability and compute-efficiency, and which can uncover more sophisticated abstractions from neural networks than the primarily linear mediators employed in current work. We also argue for more standardized evaluations that enable principled comparisons across mediator types, such that we can better understand when particular causal units are better suited to particular use cases